Chemistry 233 Chapter 1 Problem Set

1)	Draw C ₄ H ₁₀	Draw a valid Lewis structure for each com C ₄ H ₁₀				npound below. C ₄ H ₈					C_4H_6			
	C ₄ H ₈ C)I ₂			C₃ŀ	H ₉ N				C ₄ H ₈ (ring)			
	PH ₃				СН	₃ OH				BF ₃ Note: B	will not	nave a fu	ll octet.	
2)	Draw CH ₂ N ₂	Draw a valid Lewis structure for each compound below. Assume the atoms $\mathrm{CH_2N_2}$ $\mathrm{HCO_2CI}$									iged a	s show	∕n.	
	Н	С	N	N	Н	0	С	CI			0			
		Н					0				С			
										С		С		
										С	(?		

3) For each compound shown below, determine the number of hydrogen present on each carbon atom.

$$H_2N$$
 \longrightarrow
 N
 \oplus
 \bigcirc

4) Determine the hybridization of each non-hydrogen atom in the compounds below.

$$HC = C - CH_3$$

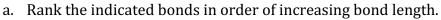
$$H_3C - C - O - H$$

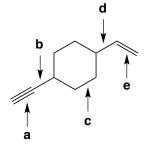
$$H_2C - CH_3$$

$$H_2C - CH_2$$

$$H_3C - CH_2$$

5) Predict the electron geometry around each indicated atom below.


6) Classify each bond using σ and π . List the number of each bond type (i.e. $1 \sigma \& 2 \pi$ bonds).


7) For each bond indicated in the structures below, determine the orbitals that make up that particular bond.

$$H_2C$$

8) Consider the molecule shown below:

- b. Rank the indicated bonds in order of increasing bond strength.
- 9) Answer the following questions about each molecule shown below.

- 1. Label the shortest bond.
- Label the shortest C-C single bond.
 Label the weakest C-C bond.
- 4. Label the strongest bond
- 5. Label the strongest C-H bond
- 6. Explain why bond **a** and bond **b** are different lenghts.

- 1. What is the hybridization of each N atom?
- 2. What is the geometry around each N atom?
- 3. In what type of orbital does the lone pair in each N reside?

10)Convert each condensed structure below to a Kekule structure and a skeletal structure.

Condensed	Kekule	Skeletal
(CH3)2CH(CH2)2OH		
CH ₃ (CH ₂) ₃ CH(Cl)CH ₃		
(CH ₃) ₃ CCH ₂ C(CH ₃) ₂ CH ₂ Br		
(dirisj)sddirizd(dirisj)zdirizbi		
BrCH ₂ OCH ₂ CO ₂ H		
H ₂ NCH ₂ N(CH ₃)CH ₂ Br		
CH ₃ (CH ₂) ₃ CCl(CH ₃) ₂		
6113(6112)3661(6113)2		

11)Convert each structure below to a fully condensed structure.

$$\bigcirc$$

12)Draw each of the following as skeletal structures.

$$H_{2}H_{2}$$
 $H_{3}C-C\equiv C-C-C-CH_{3}$